- Mitzel, N. W., Angermaier, K. & Schmidbaur, H. (1994). Organometallics, 13, 1762-1766.
- Mitzel, N. W., Hofmann, M., Waterstradt, E., Schleyer, P. von R. & Schmidbaur, H. (1994). J. Chem. Soc. Dalton Trans. pp. 2503-2508.
- Mitzel, N. W., Riede, J., Schier, A., Paul, M. & Schmidbaur, H. (1993). Chem. Ber. 126, 2027–2032.
- Mitzel, N. W., Schier, A., Beruda, H. & Schmidbaur, H. (1992). *Chem.* Ber. 125, 1053–1059.
- Mitzel, N. W., Schier, A. & Schmidbaur, H. (1992). Chem. Ber. 125, 2711–2712.
- Ruhlandt-Senge, K., Bartlett, R. A., Olmstead, M. M. & Power, P. P. (1993). Angew. Chem. 105, 495–461; Angew. Chem. Int. Ed. Engl. 32, 425–427.
- Schrenk, V. & Mattes, R. (1988). Z. Anorg. Allg. Chem. 566, 71-76.
- Sheldrick, G. M. (1989). *SHELXTL-Plus*. Release 4.0 for Siemens R3 Crystallographic Research System. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Wannagat, U., Flindt, R., Brauer, D. J., Bürger, H. & Dörrenbach, F. (1989). Z. Anorg. Allg. Chem. 572, 33–46.

p-Chlorophenyl 3,4,6-Tri-*O*-benzyl-2-deoxy-2-methylene-β-D-glucopyranoside

V. KABALEESWARAN AND S. S. RAJAN

Department of Crystallography and Biophysics, University of Madras, Madras 600 025, India

C. BOOMA AND K. K. BALASUBRAMANIAN

Department of Chemistry, Indian Institute of Technology, Madras 600 036, India

(Received 14 March 1994; accepted 19 September 1994)

Abstract

The title compound, $C_{34}H_{33}ClO_5$, has a β configuration at the anomeric centre C1. The pyranose ring adopts a chair conformation with all the substituents in equatorial positions. The molecular packing is achieved through van der Waals interactions.

Comment

The title compound was prepared as an intermediate to prove the mechanism of the reaction of a new Ferrier system (Booma & Balasubramanian, 1993*a*) with phenols (Booma & Balasubramanian, 1993*b*). Structure (I) was originally suggested for this compound but NMR NOE experiments indicated structure (II) with a β configuration at the anomeric centre C1 (Fig. 1). The present paper reports the X-ray structure, confirming this configuration in the crystal. A perspective view of the molecule is given in Fig. 1.

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved

The pyranose ring adopts a chair conformation ($\Delta C_m = 8.2^\circ$, $\Delta C_2 = 10.1^\circ$) (Duax, Weeks & Rohrer, 1976). All the phenyl rings are planar [$\chi^2 = 1.0, 19.0, 3.6$ and 2.8 for rings A (C8–C13), B (C14–C19), C (C22–C27) and D (C29–C34), respectively]; the angles between the planes are A–B 121.0 (3)°, B–C 137.0 (2)°, C–D 147.1 (2)°, A–D 128.9 (3)°, A–C 18.5 (2)° and B–D 16.4 (2)°. The moiety C6–O2–C7–C8 is planar and makes an angle of 27.7 (4)° with ring A.

The C28—O5 bond is synplanar with respect to the C29—C34 bond. The substituents at C1, C3, C4 and C5 are all in equatorial positions. The packing in the unit cell is governed only by van der Waals interactions.

Fig. 1. A perspective view of the title compound.

Experimental

Crystal data

C₃₄H₃₃ClO₅ $\lambda = 1.5418 \text{ Å}$ $M_r = 558.093$ Orthorhombic $P2_{1}2_{1}2_{1}$ reflections a = 8.236(3) Å $\theta = 15 - 25^{\circ}$ b = 14.967 (4) Åc = 24.032(5) Å T = 293 K $V = 2962 (1) \text{ Å}^3$ Needle Z = 4 $D_x = 1.24 \text{ Mg m}^{-3}$ Colourless $D_m = 1.25$ (2) Mg m⁻³ D_m measured by flotation

Data collection

Enraf–Nonius diffractometer
$\omega/2\theta$ scans
Absorption correction:
none
2538 measured reflections
2538 independent reflections
2214 observed reflections
$[l > 3\sigma(l)]$

Cu $K\alpha$ radiation $\lambda = 1.5418$ Å Cell parameters from 25 reflections $\theta = 15-25^{\circ}$ $\mu = 1.4 \text{ mm}^{-1}$ T = 293 KNeedle $0.24 \times 0.12 \times 0.10 \text{ mm}$ Colourless Crystal source: recrystallized from CHCl₃-EtOH

 $\theta_{\text{max}} = 60^{\circ}$ $h = 0 \rightarrow 8$ $k = 0 \rightarrow 16$ $l = 0 \rightarrow 26$ 3 standard reflections monitored every 200 reflections intensity decay: <3%

[†] DCB contrubution No. 840.

- 72		•				
$\boldsymbol{\nu}$	nt	7 21	01	m	<i>n</i> 1	**
n	cı.	"	c I	74	C /	u

Refinement on F	$w = 1/[\sigma^2(F) + 0.009(F)^2]$
R = 0.042	$(\Delta/\sigma)_{\rm max} = 0.113$
wR = 0.047	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
S = 0.62	$\Delta \rho_{\rm min} = -0.17 \ {\rm e} \ {\rm \AA}^{-3}$
1548 reflections	Extinction correction: none
361 parameters	Atomic scattering factors
All H-atom parameters	from SHELXS86
refined	(Sheldrick, 1985)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i . \mathbf{a}_j.$

	x	y	Z	U_{ea}
Cl	0.1544 (3)	0.2906 (1)	0.9885 (1)	0.109(1)
01	0.3531 (5)	0.7406 (2)	0.9660 (1)	0.058 (2)
02	0.3093 (6)	0.7285 (3)	0.8489 (1)	0.079 (3)
03	0.3344 (5)	0.6593 (3)	1.0454 (1)	0.067 (2)
04	0.2687 (5)	0.9776 (3)	1.0469 (1)	0.072 (2)
05	0.2428 (5)	0.9662 (2)	0.9254 (1)	0.064 (2)
C1	0.2655 (7)	0.7331 (4)	1.0169 (2)	0.058 (3)
C2	0.2866 (7)	0.8164 (4)	1.0498 (2)	0.062 (3)
C3	0.2341 (7)	0.8980 (4)	1.0181 (2)	0.060 (3)
C4	0.3122 (7)	0.8997 (4)	0.9604 (2)	0.059 (3)
C5	0.2880 (6)	0.8113 (3)	0.9320 (2)	0.053 (3)
C6	0.3733 (8)	0.8036 (4)	0.8769 (2)	0.061 (3)
C7	0.4147 (8)	0.6887 (4)	0.8102 (2)	0.070 (4)
C8	0.3332 (8)	0.6070 (4)	0.7858 (2)	0.058 (3)
C9	0.3783 (9)	0.5775 (4)	0.7340 (2)	0.081 (4)
C10	0.3079 (12)	0.5008 (6)	0.7116 (3)	0.098 (5)
C11	0.1987 (12)	0.4550 (5)	0.7400 (3)	0.099 (5)
C12	0.1537 (12)	0.4822 (5)	0.7911 (3)	0.103 (6)
C13	0.2186 (9)	0.5578 (4)	0.8148 (2)	0.077 (4)
C14	0.2927 (7)	0.5745 (4)	1.0283 (2)	0.059 (3)
C15	0.2171 (8)	0.5549 (4)	0.9785 (2)	0.065 (3)
C16	0.1769 (8)	0.4680 (4)	0.9663 (2)	0.069 (4)
C17	0.2155 (8)	0.4011 (4)	1.0025 (2)	0.076 (4)
C18	0.2975 (10)	0.4202 (5)	1.0518 (3)	0.091 (5)
C19	0.3340 (8)	0.5074 (5)	1.0636 (2)	0.078 (4)
C20	0.3489 (9)	0.8195 (5)	1.1015 (2)	0.091 (5)
C21	0.1348 (8)	1.0160 (5)	1.0762 (2)	0.077 (4)
C22	0.1986 (7)	1.0756 (4)	1.1204 (2)	0.062 (3)
C23	0.1587 (10)	1.0599 (4)	1.1756 (2)	0.082 (4)
C24	0.2198 (12)	1.1161 (5)	1.2160 (2)	0.098 (5)
C25	0.3134 (9)	1.1867 (5)	1.2040 (3)	0.079 (4)
C26	0.3545 (10)	1.2030 (4)	1.1500 (3)	0.086 (5)
C27	0.2986 (10)	1.1480 (4)	1.1088 (2)	0.079 (4)
C28	0.3165 (11)	1.0506 (5)	0.9274 (2)	0.095 (5)
C29	0.2799 (9)	1.1044 (4)	0.8758 (2)	0.069 (4)
C30	0.3445 (10)	1.1887 (4)	0.8714 (3)	0.078 (4)
C31	0.3156 (12)	1.2408 (4)	0.8246 (4)	0.102 (6)
C32	0.2216 (12)	1.2070 (5)	0.7818 (4)	0.099 (6)
C33	0.1592 (10)	1.1250 (5)	0.7870 (3)	0.087 (5)
C34	0.1829 (8)	1.0717 (4)	0.8327 (2)	0.071 (4)

Table 2. Selected geometric parameters (Å, °)

	0		• • •
01—C1	1.425 (6)	O3-C14	1.378 (7)
01—C5	1.440 (5)	O4—C3	1.407 (7)
O2C6	1.412 (7)	O4C21	1.429 (7)
O2—C7	1.405 (7)	O5C4	1.423 (6)
O3C1	1.418 (7)	O5—C28	1.402 (9)
C101C5	110.9 (4)	O5-C4-C5	107.1 (4)
C6	115.0 (5)	01—C5—C4	109.9 (4)
C1-03-C14	118.3 (4)	C4C5C6	113.9 (4)
C3-04-C21	115.3 (4)	O1-C5-C6	105.6 (4)
C4-05-C28	115.8 (4)	O2-C6-C5	107.8 (4)
01-C1-03	105.9 (4)	O2—C7—C8	109.0 (5)
O3-C1-C2	110.5 (4)	O3-C14-C19	115.6 (5)
01-C1-C2	109.3 (4)	O3-C14-C15	124.5 (5)
O4—C3—C2	112.4 (4)	O4-C21-C22	108.7 (5)
O4—C3—C4	110.3 (4)	O5-C28-C29	111.5 (5)
O5-C4-C3	112.3 (4)		

C1-01-C5-C6	-171.9 (4)	C1-C2-C3-O4	-174.1 (4)
C1-01-C5-C4	64.8 (5)	C20-C2-C3-O4	4.4 (8)
C5-01-C1-03	177.2 (4)	C20-C2-C3-C4	128.2 (6)
C5-01-C1-C2	-63.8 (5)	04-C3-C4-05	-66.1 (6)
C6	177.2 (5)	C2-C3-C4-O5	169.0 (4)
C7-02-C6-C5	-153.9 (4)	O4-C3-C4-C5	174.7 (4)
C14-03-C1-01	-77.3 (5)	O5C4C5O1	-178.9 (4)
C1-03-C14-C15	14.6 (8)	C3-C4-C5-O1	-56.6 (5)
C1-03-C14-C19	-166.8 (5)	O5-C4-C5-C6	62.8 (6)
C14-03-C1-C2	164.5 (4)	01-C5-C6-02	73.7 (5)
C3-04-C21-C22	158.4 (5)	C4C5C6O2	-165.7 (4)
C21-04-C3-C2	-99.4 (6)	O2-C7-C8-C9	154.7 (5)
C21-04-C3-C4	136.7 (5)	O2-C7-C8-C13	-28.2 (8)
C4-05-C28-C29	158.6 (5)	O3-C14-C19-C18	179.1 (6)
C28-05-C4-C3	90.1 (6)	O3-C14-C15-C16	-178.2 (5)
C28-05-C4-C5	-149.1 (5)	O4—C21—C22—C23	-121.3 (6)
O3-C1-C2-C3	172.9 (4)	O4-C21-C22-C27	58.8 (7)
01—C1—C2—C3	56.7 (6)	O5-C28-C29-C30	-179.6 (6)
O3-C1-C2-C20	-5.7 (8)	O5-C28-C29-C34	0.5 (9)
01 - C1 - C2 - C20	-121.8 (6)		

Data were corrected for Lorentz and polarization effects. The structure was solved by direct methods. H atoms were found by difference Fourier synthesis and were refined isotropically. Data collection: Enraf-Nonius diffractometer software. Cell refinement and data reduction: *SDP* (Frenz, 1978). Program used to solve structure: *SHELXS*86 (Sheldrick, 1985). Program used to refine structure: *SHELX76* (Sheldrick, 1976). Calculation of geometric parameters: *PARST* (Nardelli, 1983). Molecular graphics: *PLUTO* (Motherwell & Clegg, 1978). Most of the calculations were performed on a MicroVAX II computer system.

The authors thank Professor Vasantha Pattabhi for useful discussions. One of us (VK) thanks the University of Madras for the award of a fellowship.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, bond distances and angles involving non-H atoms and torsion angles have been deposited with the IUCr (Reference: LI1117). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Booma, C. & Balasubramanian, K. K. (1993a). J. Chem. Soc. Chem. Commun. pp. 1394–1395.
- Booma, C. & Balasubramanian, K. K. (1993b). Tetrahedron Lett. 34, 6757–6760.
- Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by N. L. Allinger & E. L. Elliel, pp. 271–289. New York: John Wiley.
- Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP a Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld & G. C. Bassi, pp. 64–71. Delft Univ. Press.
- Motherwell, W. D. S. & Clegg, W. (1976). *PLUTO. Program for Plotting Molecular and Crystal Structures.* Univ. of Cambridge, England.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ of Göttingen, Germany.